IchigoJam で LED を光らせよう(2)

●外付けの LED を光らせる

今度は Ichigo Jam に付いている LED ではなく、 別の LED を外付けして光らせてみましょう。 今回は「ブレッドボード」を使って電気回路を作 ります。 はんだ付けをしなくても電気回路が作れる、便 利なボードです。

ボードには、穴がいくつも開いています。 この穴に、部品をさしていきます。

中央の「abcde」「fghij」の穴は、ボードの中で横 につながっています。

左右にある「+」「-」の穴は、ボードの中で縦 につながっています。

LED は、電流を流すと光る部品です。

端子は、「+」と「-」があります。向きを間違えると光らないので、注意してください。 ブレッドボードにさすために、足をみじかく切って広げます。

抵抗は、電流を流れにくくする部品です。LED に流れる電流を少なくするために入れます。 向きはどちら向きでもいいです。

ブレッドボードにさすために、足をみじかく切って曲げます。

外付け LED の回路ができたら、LED を光らせてみましょう。 まずはダイレクトモードで、以下のプログラムを打ちます。

LED が光ります。

LED が消えます。

OUT (アウト)命令は、出力ポートに値を出力する命令です。

OUT 1 ,1 ポート 値 番号

ポート番号	出力するポートの番号(1~6)。
値	デジタル出力なので、「0」か「1」を指定する。

LED を光らせるには「**OUT 1**,**1**」と入力して、OUT1 ポートに「1」(電圧が高い)を出力します。

GND ポートはいつも「0」(電圧が0)の状態です。

電圧が高い方から低い方へ電流は流れるので、OUT1→GND の方向へ電流が流れて、 LED が光ります。

「**OUT 1**, **0**」と入力して、OUT1 ポートに「0」を出力すると、GND ポートも「0」なので、 電流が流れず、LED は消えます。

外付け LED を光らせるプログラムを作ります。 今あるプログラムを消します。

NEW

続いて、プログラムを入力します。

_		
100	OUT 1.1	LED を光らせる
110	WAIT 30	0.5秒待つ
120	OUT 1,0	LED を消す

※あとのプログラムの都合で、行番号を100行~にしています。

RUN 命令でプログラムを実行してみましょう。LED が 0.5 秒光ります。

WAIT 命令の数字を変えて、光る時間をいろいろ変えてみましょう。

●LEDを2個にする

外付けの LED を、2 個に増やしてみましょう。 IchigoJam の OUT2 端子へ、もう1 個の LED と抵 抗をつなげます。

ブレッドボードでは、1 個目の LED のラインから 1 列空けて右側に、2 個目の LED のラインを並 べます。

(1 列空けないと、LED がぶつかってしまって差 しこめません)

回路図では、右の図のようになります。

まずはダイレクトモードで、2個目のLEDの動作確認をしましょう。

2個目の LED が光ります。

2個目の LED が消えます。

次に、プログラムを追加します。

1個目のLEDと2個目のLEDが、順番に光るようにします。

プログラムを実行してみましょう。 2 個の LED が順番に光ります。

LED1とLED2のWAITの待ち時間をいろいろ変えて、試してみましょう。

●LEDを4個にする

外付けの LED を、倍の 4 個に増やしましょう。 IchigoJam の OUT3・OUT4 端子へ、2 個の LED と抵抗をつなげます。

LED がぶつからないように、1 列ずつ空けて右 側へ並べます。

回路図では、右の図のよう になります。

まずはダイレクトモードで、3個目・4個目のLEDの動作確認をしましょう。

OUT	3	,	1	
OUT	4	,	1	

3個目・4個目の LED が光ります。

OUT	З,	Ø
OUT	4,	0

3個目・4個目の LED が消えます。

次に、プログラムを改造します。

2 個目の LED の時と同じように、3 個目・4 個目の LED を光らせるプログラムを追加してもいいのですが、同じようなプログラムを何度も打つのは大変です。

LED を光らせる部分をサブルーチンにして、くり返し呼び出すようにします。

まず、130 行~150 行のプログラム(2 個目の LED を光らせる部分)を、いったん消します。

LED を光らせる部分をサブルーチンにして、メインプログラムからくり返し呼び出します。

プログラムを実行してみましょう。 LED1~LED4 が順番に光ります。 新しく、GOSUB(ゴーサブ)命令とRETURN(リターン)命令が出てきました。

「GOSUB 100」で、100 行からのサブルーチンへジャンプします。

サブルーチンのプログラムの処理をして、「RETURN」で、メインプログラムの GOSUB の次の 命令へもどります。

このプログラムでは、LED を光らせるプログラムをサブルーチンにして、何度も呼び出しています。こうすると、同じようなプログラムを何回も打たなくてすみます。

また、ポート番号を変数 Pにして、FOR~NEXT でくり返して、LED1~LED4を順番に光らせています。

光らせる順番を逆にしてみましょう。

プログラムを実行してみましょう。今度は LED4→LED1 の順で光ります。

今は1回ずつ光って終了しますが、ずっとくり返すようにしてみましょう。

10	FOR P=4 TO 1 STEP -1
20	GOSUB 100
30	NEXT
40	GOTO 10 10行へもどる

プログラムを実行してみましょう。LED4→LED1の順で、ずっとくり返して光ります。

★できる人は

LED を光らせる順番を 1→3→2→4 にするなど、いろいろな順番で光らせるプログラムを考 えてみましょう。

●明るさセンサーを使う

明るさセンサーを使って、周りの明るさによって LED を ON/OFF してみましょう。 今回は明るさセンサーとして、フォトトランジスターを使います。

フォトトランジスターは、光が当たると 電流が流れる部品です。

	コレクタ(足が長い)
	エミッタ(足が短い)
欠けて平らに	なっている

IchigoJam の IN2 に、フォトトランジスターと $100k\Omega$ の抵抗をつなげます。

VCC(電源、+)とGND(グラウンド、-)のラインも必要なので、配線します。

回路図は下のようになります。

まず、フォトトランジスターの回路がちゃんと動作するか確認しましょう。 以下のプログラムを入力します。

1 PRINT ANA(2):GOTO 1

プログラムを実行してみましょう。画面に数字が連続で表示されます。 まわりの明るさによりますが、だいたい 900 を越えたくらいの値に なるはずです。

フォトトランジスターに指をおいて、かげにしてみましょう。 数字が 100 以下くらいに小さくなります。(まわりの明るさによって数字は変わります)

全然ちがう数字が表示されたり、かげにしても数字が変化しない場合は、どこか配線をまち がえています。よく見直しましょう。

確認ができたら、

1 (Enter)

と入力して、1行目を消しましょう。

この光センサー回路を使って、「周囲が暗くなったら LED が光る」プログラムにしてみましょう。 LED を光らせるサブルーチンを改造します。

100	IF ANA(2)	<300	THEN	OUT	P,1
110	WAIT 30	もしポート2	のアナログ入力	Jが 300 より)小さかったら
120	OUT P,0	LED を光ら	せる		
130	RETURN				

プログラムを実行してみましょう。そのままだとLED は全然光りません。 フォトトランジスターにゆびをおいてかげにすると、LED1~LED4 が順番に光ります。

ANA 関数は、アナログ入力を読み取る関数です。

ANA(2) ポート

番号

ポート番号	アナログ入力するポートの番号。
	「2」=IN2 端子
	「5」=BTN 端子
	数字を省略すると BTN
返る値	0~1023の範囲の値が返る。

ここでは「IN2 の入力値が 300 より小さかったら、LED を光らせる」という条件にしています。 「300」の数値をいろいろ変えて試してみましょう。

周囲の明るさによっては、値を調整しないと、LEDを ON/OFF できません。

SAVE 1

★できる人は

フォトトランジスターに当たる光の明るさによって、光る LED が移動する速度が変わるプログ ラムを考えてみましょう。(例:かげにして暗くするほど移動速度が速くなる)

●7 セグメント LED を光らせる回路

「7 セグメント LED」を光らせる回路を作って、数字を表示してみましょう。 7 セグメント LED は、7 個の LED を数字の形に並べたものです。 小数点も合わせて、全部で8 個の LED がパッケージに収められています。

7 セグメント LED

裏側。10本のピンがあります。

LED は、数字を表示する「a」~「g」の7個、小数点を 表示する「dp」、合計8個あります。

裏側の 10 本のピンは、○数字のように番号が付いて います。

内部では、8 個の LED がこの回路図の ようにつながっています。 回路図の番号は、ピンの番号です。

今回は、上の 7 番ピン~5 番ピンを IchigoJam の出力端子につなぎ、下の 3 番ピンまたは 8 番ピンを GND (グラウンド)端子につなぎます。

そして、例えば7番ピンへ対して「1」を出力すると、「a」のLEDに電流が流れて光ります。

ブレッドボードに7セグメント LED と抵抗を差して、IchigoJam と配線します。 7 セグメント LED から横に出すように抵抗を差して、ワイヤーをつなぐといいでしょう。

【IchigoJam と7 セグメント LED のつなぎ方】 OUT1-a(7ピン) OUT2-b(6ピン) OUT3-c(4ピン) OUT4-d(2ピン) OUT5-e(1ピン) OUT6-f(9ピン) LED-g(10ピン)

LED は7 個あるのですが、IchigoJam の出力は OUT1~OUT6 の6 個しかないので、7 個 目は LED 端子につなぎます。

回路図に書くと、右のようになります。

回路ができたら、ちゃんとLED が光るか、ダイレクトモードで確認しましょう。

OUT	1,1
OUT	2,1
OUT	3,1
OUT	4,1
OUT	5,1
OUT	6,1
OUT	7,1

7 セグメント LED の a~g の LED が光ります。

もし光らない LED があったら、どこか配線をまちがえています。よく見直しましょう。

OUT	1,0
OUT	2,0
OUT	3,0
OUT	4,0
OUT	5,0
OUT	6,0
OUT	7,0

a~gのLED が消えます。

いろいろなパターンで LED を光らせてみましょう。

●7 セグメント LED で数字を表示する

回路ができたら、「NEW」でプログラムをクリアして、新しいプログラムを作ります。 まず、LED で「0」(ゼロ)を表示してみましょう。 「0」を表示するには、このようなパターンになればいいので、 a,b,c,d,e,fの6個のLEDを光らせ、gのLEDは消せばいいです。

LED 端子は OUT7 ポートとしても指定できます。 ※あとでプログラムを改造するために、行番号を 200 からにしています。

プログラムを実行してみましょう。7 セグメント LED に「0」が表示されます。

それぞれの「1」「0」の出力をいろいろ変えて、1~9の数字を表示してみましょう。

●自動的に0~9を表示

数字の表示を変えるのに、いちいちプログラムを書きかえるのは面倒です。 自動的に 0~9の数字を表示するには、どうしたらいいでしょうか。 表示する数字 N と、各 LED の ON/OFF を、一覧表で考えてみます。

N	シ^の力。)	各 LED の ON/OFF(1=ON,0=OFF)						
IN		a	b	С	d	е	f	g
0		1	1	1	1	1	1	0
1	f b g e c d dp	0	1	1	0	0	0	0
2	f b g e c d dp	1	1	0	1	1	0	1
3	f b g e c d dp	1	1	1	1	0	0	1
4	f b g e c d dp	0	1	1	0	0	1	1
5	f b g e c d dp	1	0	1	1	0	1	1
6	a f b e c d dp	1	0	1	1	1	1	1

N	パターン		各I	LEDのON	N/OFF (1	=ON,0=O]	FF)	
IN		а	b	С	d	е	f	g
7	e c d d	1	1	1	0	0	1	0
8	a f b g c c d	1	1	1	1	1	1	1
9	a g e c d dp	1	1	1	1	0	1	1

表示したい数字 N に合わせて、a~gの LED へ出力する値「1」または「0」を、変数 A~G に セットすることにします。

100 IF	N = 0	THEN	A=1	: B = 1 :	: C = 1 :]]=1:	E=1:1	= =
1:G=0		数字か0の時	϶、Α∼G μ	210]のハタ・	-ンの1と0	を出力する。	以下同じ。	
110 IF 0 · C = 0	N=1	THEN	A=0	: B = 1 :	: C = 1 :	D = 0 :	E=0:1	= =
	$\mathbf{N} = \mathbf{O}$	THEM	0 = 4	. D – 4 .	. <u> </u>	$\mathbf{D} = \mathbf{A}$.	F - 4 - 1	
120 IF 0 · C = 4	N = 2	IHEN	H=T	: B = T :	:L=0:	$\mathbf{D} = \mathbf{T}$:	E=1:1	
400 IE	N - 0	T 1 1 C 61	0-4	. 7	0-4.	D – 4 .	F_	
130 IF 0:G=1	N=3	IHEN	н=т	: B = T :	:C=1:	$\mathbf{D} = \mathbf{T}$:	E=0:1	- =
1/10 TE	N = A	тнем	0=0	$\cdot \mathbf{R} = 1 \cdot$	C = 1	$\mathbf{D} = \mathbf{Q} \cdot \mathbf{I}$	$\mathbf{E} = \mathbf{Q} \cdot \mathbf{I}$	= _
1 = 0 1	11 - 4		H-0	· D – T ·		D-0.	L-0.1	
150 IF	N=5	THEN	A=1	: B = Ø :	:C=1:	D=1 :	E=0:1	= =
1:G=1								
160 IF	N=6	THEN	A=1	: B = Ø :	: C=1 :	$\mathbf{D}=1 \ :$	E=1:6	= =
1:G=1								
170 IF	N = 7	THEN	A=1	: B = 1 :	: C = 1 :	$\mathbb{D}=\emptyset \ :$	E=0:1	= =
1:G=0								
180 IF	N = 8	THEN	A=1	: B = 1 :	: C=1 :	$\mathtt{D}=\mathtt{1} \; : \;$	E=1:6	= =
1:G=1								
190 IF	N=9	THEN	A=1	: B=1	:C=1:	D=1:	E=0:1	= =
1:G=1								

200 OUT 1, A	OUT 1~7 に A~G を出力する。
210 OUT 2,B	
220 OUT 3,C	
230 OUT 4, D	
240 OUT 5, E	
250 OUT 6, F	
260 OUT 7,G	

さらにこのプログラムをサブルーチンにして、メインプログラムから呼び出すようにします。 まずは N を 0 にして、サブルーチンを呼び出します。

プログラムを実行してみましょう。7 セグメント LED に「0」が表示されます。 50 行目の N の値を 1~9 まで変えて、その数字が表示されるか試してみましょう。

Nをいちいち変えるのは面倒なので、FOR~NEXTを使って、0~9まで変化させます。

プログラムを実行してみましょう。IchigoJamの実行速度が速いので、あっという間に9まで行ってしまいます。

WAIT で時間待ちを入れて、少し遅くしましょう。

50 FOR N=0 TO 9	
60 GOSUB 100:WAIT 20	60分の20秒(=3分の1秒)待つ
70 NEXT	
90 END	
(後略)	

0~9の数字を順番に表示するだけではおもしろくありません。 いろいろな数字をランダムに表示する、ルーレットを作ってみましょう。 ランダムな数字を表示するように、メインプログラムを改造します。

プログラムを実行してみましょう。 「0」~「9」までの数字がランダムに表示されます。

新しく RND (ランダム) 関数が出てきました。 乱数 (らんすう、 ランダムな数)を出力します。

RND(10) 乱数の最大値

乱数の最大値 0~最大値-1の乱数が出てきます。

「RND(10)」と指定すると、0~9の乱数が出てきます。

本物のルーレットは、人間が手で回すと、だんだん遅くなって止まります。

ルーレットをスタートさせた後に、IchigoJam の押しボタンを押すと、だんだん遅くなって止ま るようにしてみましょう。

プログラムを実行してみましょう。

最初はルーレットが高速に回ります。押しボタンを押すと、ゆっくりになって止まります。

10 行目では、先頭に「'」(アポストロフィ、キーボードでは Shift キーを押しながら「7」を押す) を付けて、タイトルコメントを入れています。

「'」を付けると、その行はコメントとなり、何も実行されません。プログラムを後で見た時にわかりやすくするために、プログラムにいろいろコメントを入れるといいでしょう。

40 行目で、押しボタンが押されているかを判断するのに、BTN(ボタン) 関数を使います。

$BTN \leftrightarrow$

返り値 ボタンが押されている=1、押されていない=0

IF 命令で、BTN 関数の値が0 だったら(=ボタンが押されていない)、20 行目に戻って高速 ルーレットを続けます。ボタンが押されていたら次へ進み、ルーレットが遅くなります。

このままだとルーレットが止まると終わりなので、ボタンを押すとまた回るようにしましょう。 90 行の END を消して、BTN 関数を使った条件判断に変えます。

(前略)			
50 FOR	I=0 TO 4		
55 N=RM	\D(10)		
60 GOSUB 100:WAIT 20			
70 NEX1	Г		
90 IF B	TN()=0 THEN GOTO 90 ELSE RUN		
(後略)	ボタンが押されていなかったら、この行の先頭へもどってくりかえし 押されていたら RUN でプログラムを最初から実行		

●効果音を出す

ルーレットが回るときに、音が出るようにしてみましょう。

10 '*ROULETTE
20 N=RND(10)
30 BEEP 10,2:GOSUB 100 BEEP 音を出す
40 IF BTN()=0 THEN GOTO 20
50 FOR I=0 TO 4
55 N=RND(10)
60 BEEP 10,2:GOSUB 100:WAIT 20
70 NEXT
90 IF BTN()=0 THEN GOTO 90 ELSE RUN
(後略)

プログラムを実行してみましょう。ルーレットの数字が回るのと一緒に音が鳴ります。

音を鳴らすには BEEP(ビープ)命令を使います。文法は以下のとおりです。

音の高さ	1~255 で指定する。省略可能。
音の長さ	60分の1秒単位で指定する。「60」で1秒。省略可能。

BEEP 命令の数字を変えると、音の高さや長さが変わります。試してみましょう。

★できる人は

いろいろテクニックを使って、シンプルにしたルーレットのプログラムが、以下のとおりです。 20行で、配列変数[0]~[9]に、7桁の2進数で、0~9の数字フォントデータ(LEDを ON/OFF するデータ。0=OFF、1=ON)を設定しています。

`0111111

g f e d c b a

※逆順なので注意

30 行・70 行・120 行で、OUT 命令を使って LED を光らせています。 20 行で設定した配列変数の値を出力することで、OUT ポート 1~7 (LED ポートは OUT7 ポ ートとしても使えます)を制御しています。

プログラムを打ち込んで、動かしてみてください。 (20 行がとても長いのですが、途中で改行しないで連続で入力してください)

これまでのプログラムより、かなり高速に数字が表示されます。

